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Electric Potential 

Equipotential Surfaces; Potential due to a Point Charge and a Group of Point Charges; Potential 

due to an Electric Dipole; Potential due to a Charge Distribution; Relation between Electric Field 

and Electric Potential Energy 

 

 

1. How to find the electric force on a particle 1 of charge q1 when the particle is placed near 

a particle 2 of charge q2. 

2. A nagging question remains: How does particle 1 “know “of the presence of particle 2?  

3. That is, since the particles do not touch, how can particle 2 push on particle 1—how can 

there be such an action at a distance?  

4. One purpose of physics is to record observations about our world, such as the magnitude 

and direction of the push on particle 1. Another purpose is to provide a deeper 

explanation of what is recorded.  

5. One purpose of this chapter is to provide such a deeper explanation to our nagging 

questions about electric force at a distance. We can answer those questions by saying that 

particle 2 sets up an electric field in the space surrounding itself. If we place particle 1 at 

any given point in that space, the particle “knows” of the presence of particle 2 because it 

is affected by the electric field that particle 2 has already set up at that point. Thus, 

particle 2 pushes on particle 1 not by touching it but by means of the electric field 

produced by particle 2. One purpose of physics is to record observations about our world, 
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Equipotential Surfaces:  

Potential energy:  

  

When an electrostatic force acts between two or more charged particles within a system of 

particles, we can assign an electric potential energy U to the system. 

If the system changes its configuration from an initial state i to a different final state f, the 

electrostatic force does work Won the particles. The change ΔU in the potential energy of the 

system is 

. ΔU = Uf  - Ui = -W     (1) 

The work done by the electrostatic force is path independent. The work W done by the force on 

the particle is the same for all paths between points i and f. 

 

Also, we usually set the corresponding reference potential energy to be zero. Suppose that 

several charged particles come together from initially infinite separations (state i) to form a 

system of neighboring particles (state f ). 

Let the initial potential energy Ui be zero, and let Wf represent the work done by the electrostatic 

forces between the particles during the move in from infinity. Then, the final potential energy U 

of the system is 

 U  =  -W∞ 

Electric Potential: 

An electric potential (also called the electric field potential, potential drop or the electrostatic 

potential) is the amount of work needed to move a unit of positive charge from a reference point 

to a specific point inside the field without producing acceleration. 

The electric potential, or voltage, is the difference in potential energy per unit charge between 

two locations in an electric field. 

Electric potential, the amount of work needed to move a unit charge from a reference point to a 

specific point against an electric field. Typically, the reference point is Earth, although any point 

beyond the influence of the electric field charge can be used. 

The potential energy of a charged particle in an electric field depends on the charge magnitude. 

https://en.wikipedia.org/wiki/Work_(physics)
https://en.wikipedia.org/wiki/Electric_charge
https://www.britannica.com/science/work-physics
https://www.britannica.com/science/electric-field
https://www.britannica.com/place/Earth
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For an example, suppose we place a test particle of positive charge 1.60 × 10
-19

 C at a point in an 

electric field where the particle has an electric potential energy of 2.40 × 10
-17

 J. Then the 

potential energy per unit charge is 

  

 (2.40 × 10
-17

 J) / (1.60 × 10
-19

 C) = 150 J/C 

Next, suppose we replace that test particle with one having twice as much positive charge, 3.20 × 

10
-19

 C. We would find that the second particle has an electric potential energy of 4.80 × 10
-17

 J, 

twice that of the first particle. 

However, the potential energy per unit charge would be the same, still 150 J/C. 

The potential energy per unit charge at a point in an electric field is called the electric potential V 

(or simply the potential) at that point. Thus, 

  

V = U/q (1) 

Note that electric potential is a scalar, not a vector. 

 

The electric potential difference ΔV between any two points i and f in an electric field is equal to 

the difference in potential energy per unit charge between the two points: 

 

 (2) 

Put -W for ΔU in above equation 

  (3) 
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The potential difference between two points is thus the negative of the work done by the 

electrostatic force to move a unit charge from one point to the other. A potential difference can 

be positive, negative, or zero, depending on the signs and magnitudes of q and W. 

If we set Ui = 0 at infinity as our reference potential energy, then by Eq. 1, the electric potential 

V must also be zero there. Then from Eq. 3, we can define the electric potential at any point in an 

electric field to be 

    (4) 

 

Work Done by an Applied Force 

Suppose we move a particle of charge q from point i to point f in an electric field by applying a 

force to it. During the move, our applied force does work Wapp on the charge while the electric 

field does work W on it. By the work - kinetic energy theorem, the change ΔK in the kinetic 

energy of the particle is 

   (1) 

Now suppose the particle is stationary before and after the move. Then Kf and Ki are both zero, 

and Eq. 1 reduces to 

Wapp  = - W.  (2) 

The work Wapp done by our applied force during the move is equal to the negative of the work 

W done by the electric field - provided there is no change in kinetic energy. 

we can relate the work done by our applied force to the change in the potential energy of the 

particle during the move.  

As we know that  ΔU = Uf  - Ui = -W, so 

 

ΔU = Uf  - Ui = Wapp   (3) 

We can relate our work Wapp to the electric potential difference ΔV between the initial and final 

locations of the particle. 
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Equipotential Surfaces 

Adjacent points that have the same electric potential form an equipotential surface, which can 

be either an imaginary surface or a real, physical surface. No net work W is done on a charged 

particle by an electric field when the particle moves between two points i and f on the same 

equipotential surface. 

 W must be zero if Vf  = Vi. 

 

Figure 1 below shows a family of equipotential surfaces associated with the electric field due to 

some distribution of charges. The work done by the electric field on a charged particle as the 

particle moves from one end to the other of paths I and II is zero because each of these paths 

begins and ends on the same equipotential surface and thus there is no net change in potential. 

The work done as the charged particle moves from one end to the other of paths III and IV is not 

zero but has the same value for both these paths because the initial and final potentials are 

identical for the two paths; that is, paths III and IV connect the same pair of equipotential 

surfaces. 
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From symmetry, the equipotential surfaces produced by a point charge or a spherically 

symmetrical charge distribution are a family of concentric spheres. For a uniform electric field, 

the surfaces are a family of planes perpendicular to the field lines. In fact, equipotential surfaces 

are always perpendicular to electric field lines and thus to , which is always tangent to these 

lines. If  were not perpendicular to an equipotential surface, it would have a component lying 

along that surface. This component would then do work on a charged particle as it moved along 

the surface. However, by Eq. ΔV= Vf – Vi = -w/q work cannot be done if the surface is truly an 

equipotential surface; the only possible conclusion is that  must be everywhere perpendicular 

to the surface.  

Figure 2 shows electric field lines and cross sections of the equipotential surfaces for a uniform 

electric field and for the field associated with a point charge and with an electric dipole. 
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Electric field lines (purple) and cross sections of equipotential surfaces (gold) for (a) a uniform 

electric field, (b) the field due to a point charge, and (c) the field due to an electric dipole. 
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Calculating the Potential from the Field 

 

We can calculate the potential difference between any two points i and f in an electric field if we 

know the electric field vector E all along any path connecting those points. 

To make the calculation, we find the work done on a positive test charge by the field as the 

charge moves from i to f. 

 

 

 

Consider an arbitrary electric field, represented by the field lines in Fig. above, and a positive 

test charge q0 that moves along the path shown from point i to point f. 

At any point on the path, an electrostatic force q0E acts on the charge as it moves through a 

differential displacement. 

We know that the differential work dW done on a particle by a force F during a displacement ds 

is given by the dot product of the force and the displacement: 

 

 

To find the total work W done on the particle by the field as the particle moves from point i to 

point f,  the differential works done on the charge as it moves through all the displacements 

along the path: 
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As we know that                          

So the above equation become  

 

Above equation allows us to calculate the difference in potential between any two points in the 

field. If we set potential Vi = 0, then it becomes 

 

Potential Due to a Point Charge 

To derive relation ΔV for the space around a charged particle, an expression for the electric 

potential V relative to the zero potential at infinity. 

Consider a point P at distance R from a fixed particle of positive charge q (Fig. blow).  

 

  

We move a positive test charge q0 from point P to infinity. 

Because the path we take does not matter, let us choose the 

simplest one -- a line that extends radially from the fixed particle 

through P to infinity. 

Evaluate the dot product 

 

The electric field in Fig. is directed radially outward from the fixed 

particle. Thus, the differential displacement ds of the test particle 

along its path has the same direction as E. That means that in Eq. 

above, angle θ = 0 and cos θ = 1. Because the path is radial, let us 

write ds as dr. Then, substituting the limits R and ∞, we can write 

as 
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Next, we set Vf = 0 (at ∞) and Vi = V (at R). Then, for the magnitude of the electric field at the 

site of the test charge, we substitute from Eq.  

 

 

The above equation becomes   

 

  

Solving for V and switching R to r, we then have 

 

as the electric potential V due to a particle of charge q at any radial distance r from the particle. 

 

  

 

A computer-generated plot of the electric potential V(r) due to a positive point charge located at 

the origin of a xy plane. 

The potentials at points in the xy plane are plotted vertically.  (Curved lines have been added to 

help you visualize the plot.)  The infinite value of V predicted by above eq. for r = 0 is not 

plotted. 
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Potential Due to a Group of Point Charges 

 

We can find the net potential at a point due to a group of point charges with the help of the 

superposition principle. 

 Using Eq.  with the sign of the charge included, we calculate separately the 

potential resulting from each charge at the given point. Then we sum the potentials. For n 

charges, the net potential is 

 

Here qi is the value of the i
th

 charge and ri is the radial distance of the given point from the i
th

 

charge. 

The sum in above Eq. is an algebraic sum, not a vector sum like the sum that would be used to 

calculate the electric field resulting from a group of point charges.  
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Here in lies an important computational advantage of potential over electric field: It is a lot easier 

to sum several scalar quantities than to sum several vector quantities whose directions and 

components must be considered. 

 

Potential Due to an Electric Dipole 

To find the potential at an arbitrary point P in Fig of to an electric dipole. 

 

 

 

At P, the positive point charge (at distance r(+)  sets up potential V(+) and the negative point 

charge (at distance r(-) sets up potential V(-). Then the net potential at P is given by  

 

 

Naturally occurring dipoles - such as those possessed by many molecules - are quite small; so we 

are usually interested only in points that are relatively far from the dipole, such that r>>d where 
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d is the distance between the charges. Under those conditions, the approximations that follow 

from Fig. 

 

 

 

in which p (= qd) is the magnitude of the electric dipole moment P. The vector P is directed 

along the dipole axis, from the negative to the positive charge. (Thus, θ is measured from the 

direction of P.) We use this vector to report the orientation of an electric dipole. 

 

  

  

 

Put these value in above equation, we get  

 

where θ is measured from the dipole axis as shown in 

Fig. a. We can now write V as 
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Potential Due to a Continuous Charge Distribution 

 

When a charge distribution q is continuous (as on a uniformly charged thin rod or disk), we 

cannot use the summation to find the potential V at a point P. 

Instead, we must choose a differential element of charge dq, determine the potential dV at P due 

to dq, and then integrate over the entire charge distribution. 

Let us again take the zero of potential to be at infinity. If we treat the element of charge dq as a 

point charge, then we can express the potential dV at point P due to dq: 

 

 

Here r is the distance between P and dq. To find the total potential V at P, we integrate to sum 

the potentials due to all the charge elements: 

 

 

 

The integral must be taken over the entire charge distribution. Note that because the electric 

potential is a scalar, there are no vector components to consider. 

We now examine two continuous charge distributions, a line and a disk. 
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Line of Charge 

 

          

 

 We consider a differential element dx of the rod as shown in Fig. b. This (or any other) 

element of the rod has a differential charge of 

 

 

 

  

This element produces an electric potential dV at point P, which is a distance r = (x
2
 + d

2
)
1/2

 from 

the element (Fig. c). 

 

In Fig.(a), a thin nonconducting rod of length L has 

a positive charge of uniform linear density l. Let us 

determine the electric potential V due to the rod at 

point P, a perpendicular distance d from the left end 

of the rod. 

 

A thin, uniformly charged rod produces 

an electric potential V at point P 

 

An element can be treated as a particle. 

The potential at P due to the element depends on the distance r 
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Treating the element as a point charge, we can write the potential dV as charge, we can write the 

potential dV as 

 

Since the charge on the rod is positive and we have taken V = 0 at infinity 

We now find the total potential V produced by the rod at point P by integrating above Eq. along 

the length of the rod, from x = 0 to x = L (Figs. d and e), using integral 17 in Appendix E. We 

find 

 

We need to sum the potentials due to all the elements, from the left side 

(d) to the right side (e). 
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We can simplify this result by using the general relation ln A - ln B = ln(A/B). 

We then find  

 

 

Because V is the sum of positive values of dV, it too is positive, consistent with the logarithm 

being positive for an argument greater than 1. 

 

Charged Disk 

We calculated the magnitude of the electric field at points on the central axis of a plastic disk of 

radius R that has a uniform charge density σ on one surface. Here we derive an expression for 

V(z), the electric potential at any point on the central axis. 
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We find the net potential at P by adding (via integration) the contributions of all the rings from 

Rʹ = 0 to Rʹ = R: 

 

 

 

  In Fig., consider a differential element consisting of a flat ring of radius Rʹ and radial width dRʹ. 

Its charge has magnitude 

 

in which (2πRʹ)(dRʹ) is the upper surface area of the ring. All parts of this charged element are 

the same distance r from point P on the disk’s axis. With the aid of Fig., we can write the 

contribution of this ring to the electric potential at P as  
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Note that the variable in the second integral of Eq. is Rʹ and not z, which remains constant while 

the integration over the surface of the disk is carried out. (Note also that, in evaluating the 

integral, we have assumed that z ≥ 0.) 

 

  


